Transition to turbulence in shock-driven mixing: a Mach number study
نویسندگان
چکیده
Large-eddy simulations of single-shock-driven mixing suggest that, for sufficiently high incident Mach numbers, a two-gas mixing layer ultimately evolves to a late-time, fully developed turbulent flow, with Kolmogorov-like inertial subrange following a −5/3 power law. After estimating the kinetic energy injected into the diffuse density layer during the initial shock–interface interaction, we propose a semi-empirical characterization of fully developed turbulence in such flows, based on scale separation, as a function of the initial parameter space, as (η0+1u/ν) (η0+/Lρ)A+/ √ 1− A+ & 1.53 × 104/C 2, which corresponds to late-time Taylor-scale Reynolds numbers &250. In this expression, η0+ represents the post-shock perturbation amplitude, 1u the change in interface velocity induced by the shock refraction, ν the characteristic kinematic viscosity of the mixture, Lρ the inner diffuse thickness of the initial density profile, A+ the post-shock Atwood ratio, and C (A+, η0+/λ0) ≈ 0.3 for the gas combination and post-shock perturbation amplitude considered. The initially perturbed interface separating air and SF6 (pre-shock Atwood ratio A ≈ 0.67) was impacted in a heavy–light configuration by a shock wave of Mach number MI = 1.05, 1.25, 1.56, 3.0 or 5.0, for which η0+ is fixed at about 25 % of the dominant wavelength λ0 of an initial, Gaussian perturbation spectrum. Only partial isotropization of the flow (in the sense of turbulent kinetic energy and dissipation) is observed during the late-time evolution of the mixing zone. For all Mach numbers considered, the late-time flow resembles homogeneous decaying turbulence of Batchelor type, with a turbulent kinetic energy decay exponent n ≈ 1.4 and large-scale (k→ 0) energy spectrum ∼ k4, and a molecular mixing fraction parameter, Θ ≈ 0.85. An appropriate time scale characterizing the Taylor-scale Reynolds number decay, as well as the evolution of mixing parameters such as Θ and the effective Atwood ratio Ae, seem to indicate the existence of lowand high-Mach-number regimes.
منابع مشابه
Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملEffects of initial condition spectral content on shock-driven turbulent mixing.
The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due t...
متن کاملSimulating Cooling Injection Effect of Trailing Edge of Gas Turbine Blade on Surface Mach Number Distribution of Blade
In this research, a gas turbine blade cascade was investigated. Flow analysis around the blade was conducted using RSM and RNG.K-ε turbulence modeling and it is simulated by Fluent software. The results were considered for the cases as Mach number loss at the trailing edge of blade caused by vortexes that were generated at the end of blade. Effect of cooling flow through the trailing edge on th...
متن کاملMach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows.
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition fro...
متن کاملNumerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011